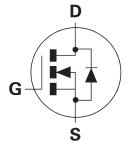

100V N-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

 $V_{(BR)DSS}$ =100 $V: R_{DS(on)}$ =0.7 Ω ; I_D =1.4A

DESCRIPTION

This new generation of Trench MOSFETs from Zetex utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage power management applications.

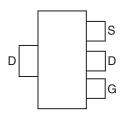

SOT89

FEATURES

- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- SOT89 package

APPLICATIONS

- DC-DC Converters
- Power Management functions
- Disconnect switches
- Motor control


ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL	
ZXMN10A07ZTA	7"	12mm	1000 units	

DEVICE MARKING

• 7N10

PINOUT

(Top view)

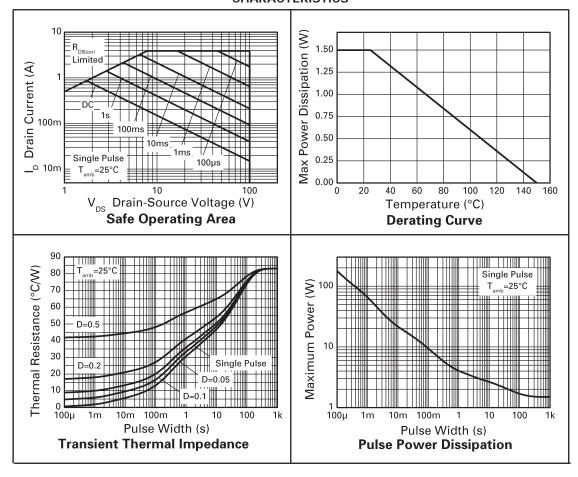
ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	V _{DSS}	100	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current @ V _{GS} =10V; T _A =25°C (b)	I _D	1.4	А
@ V _{GS} =10V; T _A =70°C ^(b)		1.1	
@ V _{GS} =10V; T _A =25°C ^(a)		1.0	
Pulsed Drain Current ^(c)	I _{DM}	4.2	А
Continuous Source Current (Body Diode) (b)	Is	2.1	А
Pulsed Source Current (Body Diode) (c)	I _{SM}	4.2	Α
Power Dissipation at T _A =25°C ^(a)	P _D	1.5	W
Linear Derating Factor		12	mW/°C
Power Dissipation at T _A =25°C ^(b)	P _D	2.6	W
Linear Derating Factor		21	mW/°C
Operating and Storage Temperature Range	T _j , T _{stg}	-55 to +150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient ^(a)	$R_{\Theta JA}$	83.3	°C/W
Junction to Ambient ^(b)	$R_{\Theta JA}$	47.4	°C/W

NOTES



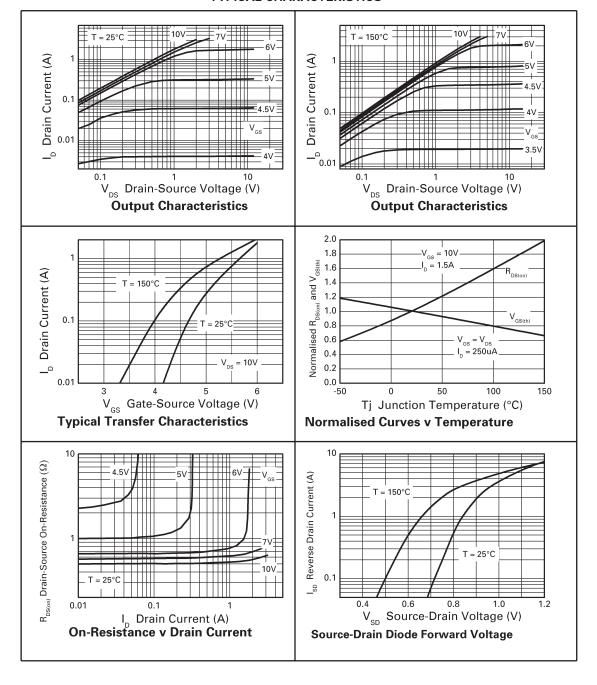
⁽a) (a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

⁽b) For a device surface mounted on FR4 PCB measured at t \leq 10 sec.

⁽c) Repetitive rating 25mm x 25mm FRA PCB, D = 0.02, pulse width 300μs - pulse width limited by maximum junction temperature. Refer to Transient Thermal Impedance graph.

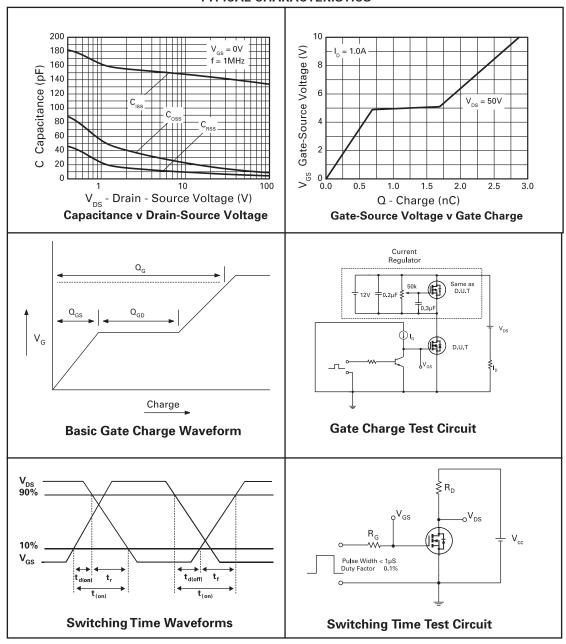
CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25$ °C unless otherwise stated).

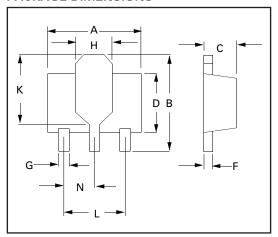

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
STATIC							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	100			V	I _D = 250μA, V _{GS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}			1	μΑ	V _{DS} = 100V, V _{GS} =0V	
Gate-Body Leakage	I _{GSS}			100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$	
Gate-Source Threshold Voltage	V _{GS(th)}	2.0			V	I _D = 250μA, V _{DS} =V _{GS}	
Static Drain-Source On-State	R _{DS(on)}			0.7	Ω	V _{GS} = 10V, I _D = 1.5A	
Resistance ⁽¹⁾				0.9	Ω	V _{GS} = 6V, I _D = 1A	
Forward Transconductance (1) (3)	g _{fs}		1.6		S	V _{DS} = 15V, I _D = 1A	
DYNAMIC (3)	•	•	•	•	•		
Input Capacitance	C _{iss}		138		pF	\/ F0\/ \/ 0\/	
Output Capacitance	C _{oss}		12		pF	V _{DS} = 50V, V _{GS} =0V f=1MHz	
Reverse Transfer Capacitance	C _{rss}		6		pF	71= 11VI Z	
SWITCHING ^{(2) (3)}			•	•	•		
Turn-On-Delay Time	t _{d(on)}		1.8		ns		
Rise Time	t _r		1.5		ns	V _{DD} = 50V, I _D = 1A	
Turn-Off Delay Time	t _{d(off)}		4.1		ns	$R_{G} \approx 6.0 \Omega$, $V_{GS} = 10 V$	
Fall Time	t _f		2.1		ns		
Total Gate Charge	Qg		2.9		nC		
Gate-Source Charge	Q _{gs}		0.7		nC	V _{DS} = 50V, V _{GS} = 10V	
Gate Drain Charge	Q _{gd}		1		nC	I _D = 1A	
SOURCE-DRAIN DIODE							
Diode Forward Voltage ⁽¹⁾	V _{SD}		0.85	0.95	V	T _j =25°C, I _S = 1.5A, V _{GS} =0V	
Reverse Recovery Time ⁽³⁾	t _{rr}		27		ns	T _j =25°C, I _S = 1A,	
Reverse Recovery Charge ⁽³⁾	Q _{rr}		12		nC	di/dt=100A/μs	

NOTES

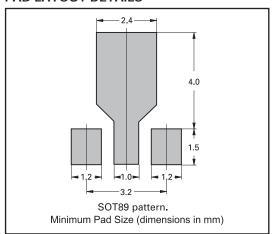
- (1) Measured under pulsed conditions. Pulse width $\leq 300 \mu s;$ duty cycle $\leq 2\%.$
- (2) Switching characteristics are independent of operating junction temperature.
- (3) For design aid only, not subject to production testing.



TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS



PACKAGE DIMENSIONS

PAD LAYOUT DETAILS

DIM	Millimetres		Inches		
DIIVI	Min	Max	Min	Max	
Α	4.40	4.60	0.173	0.181	
В	3.75	4.25	.150	0.167	
С	1.40	1.60	0.550	0.630	
D	-	2.60	-	0.102	
F	0.28	0.45	0.011	0.018	
G	0.38	0.55	0.015	0.022	
Н	1.50	1.80	0.060	0.072	
K	2.60	2.85	0.102	0.112	
L	2.90	3.10	0.114	0.112	
N	1.4	1.60	0.055	0.063	

© Zetex plc 2003

Europe

Zetex plc
Fields New Road
Chadderton
Oldham, OL9 8NP
United Kingdom
Telephone (44) 161 622 4444
Fax: (44) 161 622 4446
hq@zetex.com

Zetex GmbH Streitfeldstraße 19 D-81673 München

Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 europe.sales@zetex.com Americas

Zetex Inc 700 Veterans Memorial Hwy Hauppauge, NY 11788

Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com Asia Pacific

Zetex (Asia) Ltd 3701-04 Metroplaza Tower 1 Hing Fong Road Kwai Fong Hong Kong Telephone: (852) 26100 611 Fax: (852) 24250 494

asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

ZETEX SEMICONDUCTORS